The Preparation of 2-O-Acetonyl- β-cyclodextrin as One Key Intermediate for Water Soluble $\boldsymbol{\beta}$-Cyclodextrin Derivatives

Ai You $\mathrm{HAO}^{1}{ }^{*}$, Jin Shan WANG ${ }^{2}$
${ }^{1}$ School of Chemistry \& Chemical Engineering, Shandong University, Jinan 250100
${ }^{2}$ Department of Chemistry, Shandong Normal University, Jinan 250014

Abstract

Abstact: 2-O-Acetonyl- β-cyclodextrin with a suitable average substitution degree of about 5.8, which could be used as a key intermediate for water soluble functional β-cyclodextrin derivatives, was prepared based on the proper oxidation of heptakis (6-O-dimethyl-tert-butylsilyl)-2-O -hydroxypropyl- β-cyclodextrin.

Keywords: 2-O-Acetonyl- β-cyclodextrin, key intermediate, water soluble.

Regioselective functionalization of the secondary hydroxyls on the more open side, which has been considered to be the real business end of doughnut-shaped cyclodextrins (CDs, including $\alpha, \beta, \gamma-\mathrm{CD}$, etc.), is of much value for constructing potential artificial enzymes, molecular recognition sensors and other functional models ${ }^{1-8}$. These derivatives could also be used as potential drug carriers and food stabilizers ${ }^{4-6}$. For regio-selective functionalization of $\beta-C D$, particularly for the functionalization on the secondary hydroxyl side with a controlled degree of modification groups (mono-, di-, etc. $)^{1,4,5}$, a few inter -mediates, such as 2 -O-tosyl- $\beta-\mathrm{CD}^{7,8}$, $\operatorname{per}\left(2\right.$-O-tosyl)- $\beta-\mathrm{CD}^{9}$, $\operatorname{per}\left(3,6\right.$-anhydro) $-\beta-C D^{10,11}$ and heptakis-2,3-epoxy- $\beta-C^{12}$ had been developed. These intermediates are hardly soluble in water. Here we report the preparation of water soluble 2-O-acetonyl - β-CD 4 with a suitable average substitution degree of about 5.8 (Scheme 1), which could be used as a key intermediate for water soluble β-CD derivatives, for example $\mathbf{5 a}$.

For the preparation of $\mathbf{4}, \beta-\mathrm{CD}$ was first converted to silanized derivative 1 by the reactive 6 -hydroxyls ${ }^{4,5}$. 2 was prepared based on more acidic 2-hydroxyls compared with 3 -hydroxyls ${ }^{4,5}$ of $\mathbf{1}$. In the formation of $\mathbf{3}, 3$-hydroxyls and the other 2-hydroxyls of 2 could be retained under the oxidation by acetone with aluminium isopropoxide. This might be due to their relative rigid structures compared with the hydroxyls in hydroxypropyls of $\mathbf{2}$.

5a, which could be prepared by the reaction of $\mathbf{4}$ with ethylenediamine, can also be used as a key intermediate based on its active amine. $\mathbf{5 b}$ and $\mathbf{5 c}$ were examples derivatived from 5a. 5b and $\mathbf{5 c}$ both have a flexible chain that bonds an aryl moiety on the secondary side of $\beta-\mathrm{CD}$. They might be able to simulate the "induced fit" of enzymes ${ }^{13}$.

[^0]The n in $\mathbf{4}, \mathbf{5}$ a, $\mathbf{5}$ b and $\mathbf{5}$ c was the corresponding to the average substitution degree of acetonyls or the acetonyl derivatives. The n values can be controlled by the ratio of reactants and monitored by the ${ }^{1} \mathrm{H}$-NMR spectra of the products.

Scheme 1 The preparation route of 2-O-acetonyl- β-CD

5a: $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
5b: $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOPh}$
5c: $\mathrm{R}=-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{HCPh}$

5

Experimental

Commercially available β-CD was recrystallized from water and dried in vacuo at $100^{\circ} \mathrm{C}$ for 4 h . Pyridine and N, N-dimethylformamide (DMF) were dried over, and redistilled from CaH_{2}. Chloroform was dried over CaCl_{2}.
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on Brucker AM-400 spectrometer (ppm; $\mathrm{Me}_{4} \mathrm{Si}$ used as an internal reference). IR spectra were recorded on Shimaduzu IR-435 spectrometer.

Heptakis(6-O-dimethyl-tert-butylsilyl)-2-O-hydroxypropyl- β-CD 2 ($n=5.8$):

Heptakis (6-O-dimethyl-tert-butylsilyl)- β-CD 1 was prepared from β-CD according to reported method ${ }^{14,15}$. 0.07 equivalent sodium hydride (1.7 g) was added to a solution of 19.3 g of 1 in 400 mL of dry DMF at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . Subsequently, 0.07 equivalent epoxy propane (4.1 g) was added dropwise in the period of 1 h at $0^{\circ} \mathrm{C}$, then was warmed to room temperature and kept this temperature for about 12 h to form 2. The solvent was removed in vacuo followed by a silica gel column chromatography with eluant of $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{COCH}_{3} / \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(40: 15: 5: 3$ by volume) to give pure 2 in 90%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta_{\mathrm{H}}: 5.95 \sim 5.60(\mathrm{br}, 2-\mathrm{OH}$, $3-\mathrm{OH}, 3^{\prime}-\mathrm{OH}$), $5.26 \sim 4.84$ (m, $7 \mathrm{H}, \mathrm{H}-1,1^{\prime}$), $4.21 \sim 3.22$ (m, about $65 \mathrm{H}, \mathrm{H}-2^{\prime}, 2,4,6$, $5,3,4^{\prime}, 6^{\prime}, 5^{\prime}, 3^{\prime}$, and $\left.-\mathrm{H}_{2} \mathrm{CCH}(\mathrm{OH})-\right), 1.02\left(\mathrm{~d}, 17.5 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz},-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 0.85$
(s, $\left.63 \mathrm{H},\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{CSi}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}) \delta_{\mathrm{C}}: 101.9 \sim 100.8\left(\mathrm{C}-1,1^{\prime}\right), 81.7 \sim 80.2(\mathrm{C}-4$, $\left.4^{\prime}\right), 77.2 \sim 71.5\left(-\mathrm{H}_{2} \mathbf{C C H}(\mathrm{OH})-, \mathrm{C}-2^{\prime}, 3,2,5,3^{\prime}, 5^{\prime}\right), 66.4\left(-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 61.2(\mathrm{C}-6$, $\left.6^{\prime}\right)$, $24.4 \sim-3.2\left(-\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3},\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}-\right)$. Anal. calcd. for $\mathrm{C}_{101.4} \mathrm{H}_{202.8} \mathrm{O}_{40.8}$ Si_{7}, C 53.48, H 8.91; found: C 53.39, H 8.97.

Heptakis(6-O-dimethy-tert-butylsilyl)-2-O-acetonyl- β-CD 3 ($n=5.8$):
The solution of $\mathbf{2}$ formed above was directly dispersed in about 2 parts of acetone (based on volume) with a catalytic amount of aluminium isopropoxide (about 7.0 equivalent based on 2), and then refluxed for about 12 h . Most of the solvent was removed in vacuo followed by a silica gel column chromatography with eluant of CHCl_{3} / $\mathrm{CH}_{3} \mathrm{COCH}_{3} / \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ (40:15:5:3 by volume) to obtain pure 3 in 80%. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta_{\mathrm{H}}: 5.96 \sim 5.61$ (br, 2-OH, 3-OH, $3^{\prime}-\mathrm{OH}$), $5.37 \sim 4.88$ (m, $7 \mathrm{H}, \mathrm{H}-1,1^{\prime}$), 4.67 (s , about $11.6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CO}-$), 4.22~3.20 ($\mathrm{m}, 42 \mathrm{H}, \mathrm{H}-2^{\prime}, 2,4,6,5,3,4^{\prime}, 6^{\prime}, 5^{\prime}, 3^{\prime}$), $2.11\left(\mathrm{~s}\right.$, about $\left.17.4 \mathrm{H},-\mathrm{COCH}_{3}\right), 0.86\left(\mathrm{~s}, 63 \mathrm{H},\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{CSi}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}) \delta_{\mathrm{C}}$: 219.6 ($-\mathrm{CO}-$), $101.9 \sim 100.8$ (C-1, 1^{\prime}), 81.7~ 80.2 (C-4, 4^{\prime}), 78.7~71.4 ($\mathrm{OCH}_{2} \mathrm{CO}-$, C-2', 3, 2, 5, 3', 5'), $\left.61.2\left(\mathrm{C}-6,6^{\prime}\right), 28.7\left(-\mathrm{COCH}_{3}\right), 15 \sim-3.2\left(\mathrm{H}_{3} \mathrm{C}\right)_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}-\right)$. Anal. calcd. for $\mathrm{C}_{101.4} \mathrm{H}_{191.2} \mathrm{O}_{40.8} \mathrm{Si}_{7}, \mathrm{C} 53.75, \mathrm{H} 8.45$; found: C 53.66, H 8.52.

2-O-Acetonyl- β-CD 4 ($n=5.8$):
Compound 3 (14.5 g) was deprotected by treatment with 14 equivalent $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in 500 mL of CHCl_{3} at room temperature overnight. The deprotection was quenched by ice-water. The mixture was concentrated in vacuo, followed by silica gel column chromatography with eluant of $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3} / \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}(2: 3: 2$ by volume $)$ to give 76% yield of 4. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}\right) \delta_{\mathrm{H}}: 5.36 \sim 4.85\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-1,1^{\prime}\right), 4.70(\mathrm{~s}$, $\left.11.6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CO}-\right), 4.25 \sim 3.20\left(\mathrm{~m}\right.$, about $\left.42 \mathrm{H}, \mathrm{H}-2^{\prime}, 2,4,6,5,3,4^{\prime}, 6^{\prime}, 5^{\prime}, 3^{\prime}\right), 2.12$ $\left(\mathrm{s}, 17.4 \mathrm{H},-\mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}) \delta_{\mathrm{C}}: 220.6(-\mathrm{CO}-), 101.8 \sim 100.8\left(\mathrm{C}-1,1^{\prime}\right), 82.6$ ~ 80.1 ($\mathrm{C}-4,4^{\prime}$), $78.8 \sim 71.2\left(\mathrm{OCH}_{2} \mathrm{CO}-, \mathrm{C}-2^{\prime}, 3,2,5,3^{\prime}, 5^{\prime}\right), 61.1$ (C-6, 6^{\prime}), 28.7 $\left(-\mathrm{COCH}_{3}\right)$. IR, $(\mathrm{KBr}) \vee / \mathrm{cm}^{-1}: 1739$ for -CO-. Anal. calcd. for $\mathrm{C}_{59.4} \mathrm{H}_{93.2} \mathrm{O}_{40.8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, C 47.69, H 6.56; found: C 47.61, H 6.67.

2-O-(2-Aminoethyl-imino-propyl)- β-CD $\mathbf{5 a}$ ($n=5.8$):

Compound 4 (10.0 g) and 0.07 equivalent ethylenediamine reacted with a catalytic amount of acetic acid in 250 mL of DMF for 6 h at $80^{\circ} \mathrm{C}$, followed by purification on a Sephadex G-25 column ($\Phi=3.5 \times 50 \mathrm{~cm}$, the eluent was distilled water) to get $\mathbf{5 a}$ in 58 $\%$ yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}\right) \delta_{\mathrm{H}}: 5.32 \sim 4.90\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-1,1^{\prime}\right), 4.62(\mathrm{~s}$, about 11.6 H , $\left.-\mathrm{OCH}_{2} \mathrm{C}=\mathrm{N}-\right), 4.21 \sim 2.81\left(\mathrm{~m}\right.$, about $54 \mathrm{H}, \mathrm{H}-2^{\prime}, 2,4,6,5,3,4^{\prime}, 6^{\prime}, 5^{\prime}, 3^{\prime}$, and $=\mathrm{NCH}_{2^{-}}$), $2.58\left(\mathrm{~m}\right.$, about $\left.11.6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 1.77\left(\mathrm{~s}\right.$, about $\left.17.4 \mathrm{H},-\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{N}-\right), 1.25$ (br, about $\left.11.6 \mathrm{H},-\mathrm{NH}_{2}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}\right) \delta_{\mathrm{C}}: 181.6(\mathrm{C}=\mathrm{N}), 101.6 \sim 99.7\left(\mathrm{C}-1,1^{\prime}\right)$, $82.2 \sim 80.7$ (C-4, 4^{\prime}), $77.6 \sim 71.9\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{N}-, \mathrm{C}-2^{\prime}, 3,2,5,3^{\prime}, 5^{\prime}\right), 60.9$ (C-6, 6^{\prime}), $39.4\left(=\mathrm{NCH}_{2^{-}}\right), 35.5\left(-\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 24.1\left(-\left(\mathrm{H}_{3} \mathbf{C}\right) \mathrm{C}=\mathrm{N}-\right)$. Anal. calcd. for $\mathrm{C}_{71.0} \mathrm{H}_{128.0}$ $\mathrm{O}_{35.0} \mathrm{~N}_{11.6} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 49.01, \mathrm{H} 7.36$, N 9.34 ; found: C 48.96, H 7.41, N 9.32 .

2-O-[2-(N-Benzoyl-aminoethyl)-imino-propyl]-2-O-hydroxypropyl- β-CD $\mathbf{5 b}$ ($n=5.8$):

3.8 g of $\mathbf{5 a}$ was dissolved in a mixture of 40 mL of freshly distilled pyridine and 60 mL of water. Then 0.07 equivalent benzoylchloride in 20 mL of acetonitrile was added dropwise in 10 minutes. After stirring for 12 h , the reaction solution was evaporated to
about 5 mL under $50^{\circ} \mathrm{C}$ in vacuo, followed by purification on a Sephadex G- 25 column ($\Phi=3.5 \times 50 \mathrm{~cm}$, the eluent was distilled water) to get $\mathbf{5 b}$ in 57% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}\right) \delta_{\mathrm{H}}: 8.82(\mathrm{br}$, about $5.8 \mathrm{H},-\mathrm{NHCO}-), 8.12 \sim 7.41(\mathrm{~m}$, about 29 H , aromatic protons), $5.32 \sim 4.92$ (m, $7 \mathrm{H}, \mathrm{H}-1,1^{\prime}$), 4.61 (s , about $11.6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{C}=\mathrm{N}-$), $4.23 \sim 2.67$ (m, about $65 \mathrm{H}, \mathrm{H}-2^{\prime}, 2,4,6,5,3,4^{\prime}, 6^{\prime}, 5^{\prime}, 3$ ', and $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$), 1.77 (s, about 17.4 $\left.\mathrm{H},-\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{N}-\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{ppm}) \delta_{\mathrm{C}}: 177.6(\mathrm{C}=\mathrm{N}), 144.6,133.5,129.4,128.6$ (aromatic carbons), 101.9-99.8 ($\mathrm{C}-1,1^{\prime}$), 82.4 ~ 79.7 (C-4, 4^{\prime}), 77.4 ~ 65.5 $\left(\mathrm{OCH}_{2} \mathrm{C}=\mathrm{N}-, \mathrm{C}-2^{\prime}, 3,2,5,3^{\prime}, 5^{\prime}\right), 60.4\left(\mathrm{C}-6,6^{\prime}\right), 56.1\left(-\mathrm{CH}_{2}-\mathrm{NHCO}-\right), 39.6\left(=\mathrm{NCH}_{2}-\right)$, $24.2\left(-\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{N}-\right)$. Anal. calcd. for $\mathrm{C}_{111.6} \mathrm{H}_{116.4} \mathrm{O}_{40.8} \mathrm{~N}_{11.6} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 58.05, \mathrm{H} 5.05, \mathrm{~N}$ 7.04; found: C 57.97, H 5.15, N 7.00

2-O-[2-(N-Benzylidene-aminoethyl)-imino-propyl]- $\beta-C D \mathbf{5 c}(n=5.8)$:
7.6 g of 5 a and 0.07 equivalent benzaldehyde were dissolved in 20 mL of DMF and stirred for 2 h . 2 mL of $5 \% \mathrm{HCl}$ solution was added dropwise and the mixture stirred for another 2 h . The reaction solution was concentrated to about 5 mL under $50^{\circ} \mathrm{C}$ in vacuo, and then a Sephadex G-25 column ($\Phi=3.5 \times 50 \mathrm{~cm}$) was applied to furnish $\mathbf{5 c}$ in 58% yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}\right) \delta_{\mathrm{H}}: 8.34(\mathrm{~s}$, about $5.8 \mathrm{H},-\mathrm{N}=\mathrm{CH}-), 7.85-7.37(\mathrm{~m}$, about 29 H , aromatic protons), $5.22 \sim 4.87\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-, 1,1^{\prime}\right), 4.62$ (s, about 11.6 H , $\left.-\mathrm{OCH}_{2} \mathrm{C}=\mathrm{N}-\right), 4.19 \sim 2.72\left(\mathrm{~m}\right.$, about $65 \mathrm{H}, \mathrm{H}-2^{\prime}, 2,4,6,5,3,4^{\prime}, 6^{\prime}, 5^{\prime}, 3^{\prime}$, and $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}\right), 1.76$ (s, about 17.4 H , $\left.-\left(\mathrm{H}_{3} \mathrm{C}\right) \mathrm{C}=\mathrm{N}-\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, \mathrm{ppm}\right) \delta_{\mathrm{C}}: 175.8$ ($-\mathrm{OCH}_{2} \mathbf{C}=\mathrm{N}-$), 152.1 ($-\mathrm{N}=\mathbf{C H P h}$), 136.1, 130.5, 128.7, 127.2 (aromatic carbons), $102.0 \sim 100.1$ (C-1, 1'), 81.6~80.1(C-4, 4'), 76.6~65.1 ($\mathrm{OCH}_{2} \mathrm{CN}-, \mathrm{C}-2^{\prime}, 3,2,5,3$ ', $\left.5^{\prime}\right), 61.5 \sim 58.8\left(\mathrm{C}-6,6^{\prime},-\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CHPh}\right), 38.9\left(=\mathrm{NCH}_{2}-\right)$, $24.0\left(-\left(\mathrm{H}_{3} \mathbf{C}\right)-\mathrm{CN}-\right)$. Anal. calcd. for $\mathrm{C}_{111.6} \mathrm{H}_{116.4} \mathrm{O}_{35.0} \mathrm{~N}_{11.6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, C 60.49, H 5.26, N 7.34; found: C 60.41, H 5.30, N 7.31 .

Acknowledgment

This work was supported by the National Natural Science Foundation of China (29902004).

References

1. C. J. Easton , S. F. Lincoln, "Modified Cyclodextrins", Pub. Imperial College Press, London, 1999.
2. D. Q. Yuan, R. G. Chen, H. M. Zhao, You Ji Hua Xue (Chin. J. Org. Chem.), 1992, (12), 126.
3. Y. Inoue, Y. Liu, L. H. Tong, B. J. Shen, D. S. Jin, J. Am. Chem. Soc., 1993, 115, 10637.
4. J. Szejtli, Proc. Int. Symp. Cyclodextin, 4Th, Kluwer Dordrecht, 1988.
5. J. Szejtli, Minutes Int. Symp. Cyclodextin, 6Th, Paris, Fr.: Stante, 1992.
6. D. Bradley, New Scientist, 1992, 1832, 15.
7. A. Ueno, R. Breslow, Tetrahedron Lett., 1982, (23), 3451.
8. B. J. Shen, L. H. Tong, H. W. Zhang, D. S. Jin, Youji Huaxue (Chin. J. Org. Chem.), 1991, (11), 265.
9. A. W. Coleman, P. Zhang, H. Parrot-Lopez, C. C. Ling, M. Miocque, L. Mascrier, Tetrahedron Lett., 1991, 3997.
10. A. Gadelle, J. Defaye, Angew. Chem. Int. Engl., 1991, (1), 78.
11. P. R. Ashton, P. Ellwood, I. Staton, J. F. Stoddart, Angew. Chem. Int. Ed. Engl., 1991, (1), 81.
12. A. R. Khan, L. Barton, V. T. D'Souza, J. Chem. Soc., Chem. Commun., 1992, 1112.
13. A. Y. Hao, J. M. Lin, L. H. Tong, J. Inclusion Phenomen., 1999, 34, 445.
14. A. W. Coleman, P. Zhang, C. C. Ling, H. Parot-Lopez, H. Galons, Carbohydr. Res., 1992, 224, 307.
15. A. Y. Hao, X. L. Lin, L. M. Sun, J. H. Yang, Synth. Commun., 2000, 30 (20), 3703.

Received 21 December, 2001

[^0]: *E-mail: haoay@sdu.edu.cn or: ayhao @sdu.edu.cn

